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Classical OPF Problem

Introduction
Rectangular voltage coordinates:
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Convex Relaxation

Relaxation does not find global optimum 

(non-zero relaxation gap)

Relaxation finds global optimum

(zero relaxation gap)

Decreasing objective

Non-convex

feasible 

space

Global

optimum

Local 

optimum

Introduction

3



/ 26

Convex Relaxation

Relaxation does not find global optimum 

(non-zero relaxation gap)

Relaxation finds global optimum

(zero relaxation gap)Introduction

3



/ 26

Convex Relaxation

Relaxation does not find global optimum 

(non-zero relaxation gap)Introduction

3



/ 26

Semidefinite Programming

• Convex optimization

• Interior point methods solve for the global optimum 

in polynomial time

Recall: 

where      and      are specified symmetric matrices

Introduction
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Moment-Based Relaxations

5



/ 26

Preliminaries

• Exploit moment-based semidefinite relaxations for 

polynomial optimization problems [Lasserre ‘10]

• Define linear functional       of polynomials         and     

• Define vector       containing all monomials up to order    

Moment SDP

where           and            are polynomial 

functions of 
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Moment-Based Relaxation

• The order- moment-based relaxation is

• Increasing     yields a tighter relaxation but has a 

computational cost

• Recover global optimum if                                      

[ localizing matrices ]

Moment SDP

[ moment matrix ]
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Two-Bus Example (First Order)

Moment SDP

[ moment constraint ]

(Eliminate        to enforce reference angle)

Lower limit of 0.9 per unit for voltage magnitude at bus 2:

[ localizing constraint ]
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Two-Bus Example (Second Order)

Moment SDP

[ moment constraint ]

(Eliminate        to enforce reference angle)
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Two-Bus Example (Second Order)

Moment SDP

[ moment constraint ]

(Eliminate        to enforce reference angle)
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Two-Bus Example (Second Order)

• Lower limit of 0.9 per unit for voltage magnitude 

at bus 2:

Moment SDP

[ localizing constraints ]
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Feasible Space Investigation
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Test System Results

• First-order relaxation is exact for many problems
[Lavaei & Low ’12, Molzahn et al. ‘13]

‒ IEEE 14, 30, 57, and 118-bus test systems

‒ Polish 2736, 2737, and 2746-bus systems in MATPOWER 

distribution

• Both small and large example systems where 

first-order relaxation fails to be exact

‒ Second and third-order relaxations globally solve many 

problems where first-order relaxation fails

Feasible Space
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Disconnected Feasible Space

Feasible Space

• Two-bus example OPF problem  
[Bukhsh et al. ‘11]

Feasible Space of 

First-Order Relaxation

Feasible Space of 

Second-Order Relaxation

Feasible Space of 

Second-Order Relaxation
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Connected But Non-Convex Space

• Five-bus example OPF problem  [Lesieutre & Hiskens ‘05]

Feasible Space
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Results for Other Systems
• Second and third-order moment-based relaxations 

globally solve small OPF problems

Case
Number of 

Buses
Parameters

Minimum

Order

Lesieutre, Molzahn, Borden, & 

DeMarco ’11
3 2

Molzahn, Lesieutre, & 

DeMarco ’14
3 2

Bukhsh, Grothey, McKinnon & 

Trodden ’13
3 2

Lesieutre & Hiskens ’05 5 2

Bukhsh, Grothey, McKinnon & 

Trodden ’13
5

2

3

2

Bukhsh, Grothey, McKinnon & 

Trodden ’13
9 2

Madani, Sojoudi & Lavaei ‘13

(ex. 1)
10 > 2

Madani, Sojoudi & Lavaei ‘13

(ex. 2)
10 2

Feasible Space
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Exploiting Sparsity
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Computational Challenges

• Moment matrix size for order- relaxation of    

-bus system:

Sparsity

14-Bus System:

17
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Extension to Large Problems

• Exploit sparsity using chordal extension and matrix 

completion decomposition  [Waki et al. ’06]

‒ Similar to existing approaches  [Jabr ‘11, Molzahn et al. ’13]

• Naïvely exploiting sparsity allows for solving second-

order relaxation with up to approximately 40 buses

• To extend to larger systems, only apply higher-order 

relaxation to problematic regions of large networks

‒ Heuristic using power injection mismatches

Sparsity
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Large-Scale First-Order Relaxations

• Global solution to some OPF problems

• Fails for other problems, but mismatch (using closest 

rank one matrix) at only a few buses
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Proof-of-Concept Example

• Global solution from application of second-order 

constraints to two buses in the IEEE 300-bus system

‒ 22% increase in computation time
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Conclusion
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Conclusion

• Moment-based relaxations find global solutions to 

OPF problems

• Investigation of the feasible spaces for first and 

second-order moment relaxations

• Exploiting sparsity and selective application of 

higher-order relaxations to globally solve larger 

problems

‒ Proof-of-concept example with moderate-size problem

Conclusion
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Ongoing Work

• Improve computational tractability for large problems

‒ Challenges: memory, numerical precision, computational speed

• Implement distributed solution algorithms

‒ Proven successful for existing OPF relaxations
[Lam, Zhang, & Tse ’11, Kraning, Chu, Lavaei, & Boyd ‘14]

• Find and explore cases where low-order relaxations fail

• Extend to other problems

‒ State estimation, voltage stability margins, etc.

Conclusion
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